Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We report the detection of near- and mid-infrared emission from polycyclic aromatic hydrocarbons (PAHs) out to ∼35 kpc in the Makani Galaxy, a compact massive galaxy with a record-breaking 100 kpc scale starburst-driven wind at redshiftz= 0.459. The NIRCam and MIRI observations with JWST take advantage of a coincidental match between the PAH spectral features at 3.3, 7.7, and (11.3 + 12.2)μm in Makani and the bandpasses of the MIRI and NIRCam filters. The warm dust is not only detected in the cool-gas tracers of the galactic wind associated with the more recent (7 Myr) starburst episode, but also in the outer warm ionized gas wind produced by the older (0.4 Gyr) episode. The presence of PAHs in the outer wind indicates that the PAHs have survived the long (R/v∼ 108yr) journey to the halo despite the harsh environment of the galactic wind. The measured F1800W/F1130W flux ratios in the unresolved nucleus, inner halo (R= 10–20 kpc), and outer halo (R= 20–35 kpc), tracers of the PAH (11.3 + 12.2)/7.7 ratios, indicate decreasing starlight intensity incident on the PAHs, decreasing PAH sizes, and increasing PAH ionization fractions with increasing distance from the nucleus. These data provide the strongest evidence to date that the ejected dust of galactic winds survives the long journey to the circumgalactic medium, but is eroded along the way.more » « lessFree, publicly-accessible full text available August 25, 2026
- 
            Abstract We present an analysis of the Hα-emitting ionized gas in the warm phase of the NGC 253 outflow using integral field spectroscopy from the Multi Unit Spectroscopic Explorer. In each spaxel, we decompose Hα, [Nii], and [Sii] emission lines into a system of up to three Gaussian components, accounting for the velocity contributions due to the disk and both intercepted walls of an outflow cone. In the approaching southern lobe of the outflow, we find maximum deprojected outflow velocities down to ∼−500 km s−1. Velocity gradients of this outflowing gas range from ∼−350 to −550 km s−1kpc−1with increasing distance from the nucleus. Additionally, [Nii]/Hαand [Sii]/Hαintegrated line ratios are suggestive of shocks as the dominant ionization source throughout the wind. Electron densities, inferred from the [Sii] doublet, peak at 2100 cm−3near the nucleus and reach ≲50 cm−3in the wind. Finally, at an uncertainty of 0.3 dex on the inferred mass of 4 × 105M⊙, the mass-outflow rate of the Hα-emitting gas in the southern outflow lobe is ∼0.4M⊙yr−1. This yields a mass-loading factor ofη ∼ 0.1 and a ∼2% starburst energy efficiency.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Abstract The search for dual supermassive black holes (SMBHs) is of immense interest in modern astrophysics. Galaxy mergers may fuel and produce SMBH pairs. Actively accreting SMBH pairs are observed as dual quasars, which are vital probes of SMBH growth. Dual quasars at cosmic noon are not well characterized. Gaia observations have enabled a novel technique to identify dual quasars at kiloparsec scales based on the small jitters of the light centroid as the two quasars vary stochastically. We present the first detailed study of az= 2.17, 0 46, 3.8 kpc separation dual quasar, J0749+2255, using JWST/NIRSpec integral field unit spectroscopy. Identified by Gaia, J0749+2255 is one of the most distant small-separation dual quasars known. We detect the faint ionized gas of the host galaxy, traced by the narrow Hαemission. Line ratios indicate ionization from the two quasars and from intense star formation. Spectral analysis of the two quasars suggests that they have similar black hole properties, hinting at the possible synchronized accretion activity or lensed quasar images. Surprisingly, the ionized gas kinematics suggest a rotating disk rather than the disturbed system expected in a major gas-rich galaxy merger. Numerical simulations show that this is a plausible outcome of a major gas-rich galaxy merger several tens of Myr before coalescence. Whether J0749+2255 reflects an interesting phase of dual quasar evolution or is a lensed quasar remains unclear. Thus, this study underscores the challenges in definitively distinguishing between dual and lensed quasars, with observations supporting either scenario.more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            Free, publicly-accessible full text available February 13, 2026
- 
            In this paper, we present the design, optimization, and implementation of a sub-wavelength grating (SWG) multi-mode interference coupler (MMI) on the silicon nitride photonic integrated circuit (PIC) platform with a significantly enhanced bandwidth compared to the conventional MMI. We extend the SWG MMI theory, previously presented for the silicon-on-insulator platform, to the Si3N4/SiO2platform. Our approach involves an initial parameter optimization for a non-paired design, followed by a shift to a paired design that offers a smaller footprint and a broader bandwidth. The optimized SWG MMI exhibits a 1 dB bandwidth of 300 nm for both the insertion loss and power imbalance, making it a significant addition to silicon nitride photonics.more » « less
- 
            Fabry-Perot Bragg grating nanoresonator with ultrahigh intrinsic Q based on low-loss silicon nitridePhotonic integrated circuits based on ultralow loss silicon nitride waveguides have shown significant promise for realizing high-performance optical systems in a compact and scalable form factor. For the first time, we have developed a Fabry-Perot Bragg grating nanoresonator based on silicon nitride on silicon dioxide platform with an ultra-high intrinsic quality factor of 19.3 million. By combining the introduction of tapered grating between cavity and periodic Bragg grating, increasing the width of cavity to multi-mode region and optimized annealing strategy for Si3N4film, the propagation loss is reduced to around 0.014 dB/cm. Fabry-Perot Bragg grating nanoresonator can be easily implemented in a simple straight waveguide occupying a minimal amount of space. Therefore, it is a key component to build a high performance photonic integrated circuit for many applications.more » « less
- 
            Abstract While stellar processes are believed to be the main source of feedback in dwarf galaxies, the accumulating discoveries of active galactic nuclei (AGN) in dwarf galaxies over recent years arouse the interest to also consider AGN feedback in them. Fast, AGN-driven outflows, a major mechanism of AGN feedback, have indeed been discovered in dwarf galaxies and may be powerful enough to provide feedback to their dwarf hosts. In this paper, we search for outflows traced by the blueshifted ultraviolet absorption features in three dwarf galaxies with AGN from the sample examined in our previous ground-based study. We confirm outflows traced by blueshifted absorption features in two objects and tentatively detect an outflow in the third object. In one object where the outflow is clearly detected in multiple species, photoionization modeling suggests that this outflow is located ∼0.5 kpc from the AGN, implying a galactic-scale impact. This outflow is much faster and possesses a higher kinetic energy outflow rate than starburst-driven outflows in sources with similar star formation rates, and is likely energetic enough to provide negative feedback to its host galaxy as predicted by simulations. Much broader (∼4000 km s−1) absorption features are also discovered in this object, which may have the same origin as that of broad absorption lines in quasars. Additionally, strong Heiiλ1640 emission is detected in both objects where the transition falls in the wavelength coverage and is consistent with an AGN origin. In one of these two objects, a blueshifted Heiiλ1640 emission line is clearly detected, likely tracing a highly ionized AGN wind.more » « less
- 
            ABSTRACT In this paper, we study the filamentary substructure of 3.3 $$\mu$$m polycyclic aromatic hydrocarbon (PAH) emission from JWST/NIRCam observations in the base of the M 82 star-burst driven wind. We identify plume-like substructure within the PAH emission with widths of $$\sim$$50 pc. Several of those plumes extend to the edge of the field-of-view, and thus are at least 200–300 pc in length. In this region of the outflow, the vast majority ($$\sim$$70 per cent) of PAH emission is associated with the plumes. We show that those structures contain smaller scale ‘clouds’ with widths that are $$\sim$$5–15 pc, and they are morphologically similar to the results of ‘cloud-crushing’ simulations. We estimate the cloud-crushing time-scales of $$\sim$$0.5–3 Myr, depending on assumptions. We show this time-scale is consistent with a picture in which these observed PAH clouds survived break-out from the disc rather than being destroyed by the hot wind. The PAH emission in both the mid-plane and the outflow is shown to tightly correlate with that of Pa $$\alpha$$ emission (from Hubble Space Telescope data), at the scale of both plumes and clouds, though the ratio of PAH-to-Pa $$\alpha$$ increases at further distances from the mid-plane. Finally, we show that the outflow PAH emission reaches a local minimum in regions of the M 82 wind that are bright in X-ray emission. Our results are consistent cold gas in galactic outflows being launched via hierarchically structured plumes, and those small scale clouds are more likely to survive the wind environment when collected into the larger plume structure.more » « less
- 
            Abstract Dual quasars—two active supermassive black holes at galactic scales—represent crucial objects for studying the impact of galaxy mergers and quasar activity on the star formation rate (SFR) within their host galaxies, particularly at cosmic noon when SFR peaks. We present JWST/MIRI mid-infrared integral field spectroscopy of J074922.96+225511.7, a dual quasar with a projected separation of 3.8 kpc at a redshiftz= 2.17. We detect spatially extended [Feii] 5.34μm and polycyclic aromatic hydrocarbon (PAH) 3.3μm emissions from the star formation activity in its host galaxy. We derive the SFR of 103.0±0.2M⊙yr−1using PAH 3.3μm, which is 5 times higher than that derived from the knee of the infrared luminosity function for galaxies atz∼ 2. While the SFR of J0749+2255 agrees with that of star-forming galaxies of comparable stellar mass at the same redshifts, its molecular gas content falls short of expectations based on the molecular Kennicutt–Schmidt law. This discrepancy may result from molecular gas depletion due to the longer elevated stage of star formation, even after the molecular gas reservoir is depleted. We do not observe any quasar-driven outflow that impacts PAH and [Feii] in the host galaxy based on the spatially resolved maps. From the expected flux in PAH-based star formation, the [Feii] line likely originates from the star-forming regions in the host galaxy. Our study highlights the extreme stardust nature of J0749+2255, indicating a potential connection between the dual quasar phase and intense star formation activities.more » « less
- 
            Abstract Feedback likely plays a crucial role in resolving discrepancies between observations and theoretical predictions of dwarf galaxy properties. Stellar feedback was once believed to be sufficient to explain these discrepancies, but it has thus far failed to fully reconcile theory and observations. The recent discovery of energetic galaxy-wide outflows in dwarf galaxies hosting active galactic nuclei (AGNs) suggests that AGN feedback may have a larger role in the evolution of dwarf galaxies than previously suspected. In order to assess the relative importance of stellar versus AGN feedback in these galaxies, we perform a detailed Keck/KCWI optical integral field spectroscopic study of a sample of low-redshift star-forming (SF) dwarf galaxies that show outflows in ionized gas in their Sloan Digital Sky Survey spectra. We characterize the outflows and compare them to observations of AGN-driven outflows in dwarfs. We find that SF dwarfs have outflow components that have comparable widths (W80) to those of outflows in AGN dwarfs, but are much less blueshifted, indicating that SF dwarfs have significantly slower outflows than their AGN counterparts. Outflows in SF dwarfs are spatially resolved and significantly more extended than those in AGN dwarfs. The mass-loss, momentum, and energy rates of star-formation-driven outflows are much lower than those of AGN-driven outflows. Our results indicate that AGN feedback in the form of gas outflows may play an important role in dwarf galaxies and should be considered along with SF feedback in models of dwarf galaxy evolution.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
